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Corporate default behavior: A simple stochastic model
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We compare observed temporal dynamics of corporate default to a first-passage-time model and find that
corporations default as if via diffusive dynamics.
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I. INTRODUCTION prietary stochastic models of defduftrovides compelling
evidence in support of the usefulness of a stochastic ap-
An entity defaults when it fails to make a contractually proach to explaining default dynamics.
obligated payment to a creditor. When that entity is a corpo- Our understanding of corporate default dynamics is com-
ration the impact on securities issued by that corporation caplicated by the comparatively rare nature of the corporate
be both swift and dramatic. Consequently, the dynamics oflefault event. Fortunately, a variety of financial institutions
the default process bear directly on the practice of risk maninciuding rating agencies have compiled cumulative default
agement and security pricing as well as on current r_?sear?ﬁ'obabilities for corporations with credit ratings. Ratings
on asset price dynamics. While there is a long tradition ofyoyide the investor with a measure of the default risk of
asset dynamics research in both the finance and physics litymorate securities. Indeed, it has been known for decades

erature[1-4], the closely related dynamics of default have a4 «5 rating is designed to indicate how likely it is that the
receive comparatively little attention. In this paper we show:

. . . Issuer will be able to meet principal and interest payments”
that a simple stochastic model of corporate default dynamlcFlo]_ In many respects ratings are rather remarkable in that

:_:at IS well knownh|n stﬁtlsut():_al rgechanlcs—g(;aOmetncthe complexity of the capital structure of a firm can be
rownian motion with an absorbing barrier—provides a re-g,,ymeq up in a single letter grafi@hat this scalar repre-

markably good description of observed default behavior olgniation of the capital structure is, as cited above, a measure

cprpo_rations an_d implies that corporations default as if viaof the probability of paymentand, by necessity, the prob-
d|ffu3|ye dynamics. . . . ability of defauld implies that a comparatively simple dy-
While default forecasting has been the subject of active - mics may be able to describe default dynamics, and the

research for decade5-7], the relationship bgtween O_b' Byrpose of this paper is to demonstrate that this is indeed so.
served corporate default data and the stochastic dynamics The challenge posed to a theoretical description of corpo-

firm value remains indirectly explored. This is due, in part, t0,ate default is illustrated in Fig. 1 where we present the cu-

the hls'gorlcal_l development of the two major research PrOmulative default probability as a function of time for AAA,
grams in th|s_ area. One program can be characterlzgd #BB, and CCC rated companies published by Standard and
originating with the work of Altman[8,9] where a credit Poor's [23]. The AAA data denoted by the diamonds are
score is developed as a linear function of explanatory ac; ughly convex for all time less than 10 years. Beyond 10
counting variables. While this approach has been successfyl, s there are no observed defaults and the cumulative de-
in predicting default and is consistent with what one mightfault probability is constant. The CCC data denoted by the
expect given the focus of rating agencies on financial ratio?riangles are quite different with a concave function for all

l[.lo.’lg’.it _ha;}s a Iinehar deter:ministciic strupturef that proyidestime_ The BBB data show characteristics of both AAA and
imited Insight into the stochastic dynamics of corporations.c . onyex for short times and concave for long times.

The other major research program began with the work o urthermore, we see that in passing from AAA to CCC the

Merton [12], who applied a contingent-claims approach ¢, ,jative default probabilities change by an order of mag-
[13,14] to the calculation of corporate bond spreads. Al- Hmuiatv e t ge by g

though this approach is an explicitly stochastic treatment of

corporate dynamics, it suffered marginalization because it 1See, for example, KMV'EREDITMONITOR™ [19], J. P. Morgan's
failed to_ reproduce observed corpo_rate bond prlces. Currer&QEDITYMETRICSTM [2(;)], and Moody’s public firm r’isk modd21].

_bon_d price resef_irc[?L_S] now recognizes that this _marg'”a" 2In this paper we have used the data published by Standard and
ization was not justified because the difference in price dypgors and, consequently, their rating convention. In this convention
namics between corporate and government bonds is only pag-paa rating is the rating of “highest grade” aha D rating is
tially determined by corporate default dynamics. Thus, whileyeserved for a firm in default and indicative of the lowest estimated
extensions of Merton's modék.g.,[16-18) that typically  salvage value. AAA, AA, A, and BBB are all considered “invest-
involve multiple stochastic processes can reproduce bonghent grade.” Ratings BB, B, CCC, and CC are known by the names
prices, they provide limited direct information regarding the “not investment grade,” “high yield,” and “junk.” The rating C is
stochastic dynamics of firm value. Nevertheless, the successserved for income bonds. Finally, ratings DDD-D are in “default,
of these models and of commercial products based on prawith rating indicating relative salvage valug22].
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FIG. 1. Observed cumulative default probability for AAA, BBB, FIG. 2. A schematic representation of a simple corporate capital

and CCC credits published by Standard and Pogdiamonds, Structure.
squares, and triangles, respectiyelphe arrows point to the appro-
priatey axis for each data series. firm is in default as it can only payWK)% of the debt
amount. If the value of the asséfsis equal toK the equity
nitude. To describe this default behavior we develop an anaiolders also get nothing, but the debt can be fully repaid.
lytic expression for default probability in Sec. Il and apply it Finally, if the value of the asset$ exceed« then the debt
to the observed default data published by Standard andan be repaid and the value of the equity is equal to the
Poor’s[23] in Sec. Ill. Our analysis will demonstrate that a differenceV— K. Thus the value of the firri is equal to the
single variable in the analytic formula provides effective dis-value of the equity, maX{(—K,0), and the value of the debt,
crimination between various credit ratings. We conclude thisy — max(V—K,0). Given these functional forms for the pay-
paper in Sec. IV. out to the stockholders and debt holders of the firm, it is a
relatively straightforward exercise in option-pricing thebry
Il. THE DEFAULT MODEL to price the value of either debt or equity at any point in time
between the initial investment and the payout date. This ide-
The structural basis for the firm model is, perhaps, bestlized “wait and see where the assets end up” model and the
illustrated by the levered mutual fund or unit trust describedreality of debt agreements can be brought closer together by
by Crosbie[24]: a firm totally invested in traded securities. allowing for the debt holders to reorganize the firm whenever
We assume that the assets of the firm are securities witlf reaches a prescribed leve common feature of contrac-
readily observable market prices with which the value of thetual agreements between the debt holders and the firm known
firm can be measured at any time. To buy these assets th& bond indentures. Although corporations typically have a
firm can access two sources of funds. First, the firm cammore complex capital structure and often invest in assets for
obtain funds from the equity market by taking in cash fromwhich prices are hard to come by, the basic features of eg-
the shareholders in the firm. Second, the firm can obtaimity, debt, and(by implication bankruptcy are, in general,
funds from the debt market by issuing a bond or taking out ahe same: funds are raised in the equity and debt markets and
loan of amount. The process of generating debt is alwaysif a debt payment is missed default occurs.
accompanied by the generation of a credit rating. This can be The model begins with the traditional assumption that a
explicit and public as seen when a firm requests a rating of gorporation is represented as an asset with a market Value
debt issue by a rating agency, explicit and private as when and that, while the return of the asset is uncertain because of
bank makes a loan, or implicit and public when a nonratedvarious risks associated with the business, it is lognormally
issue is priced in the bond market. We assume that the firmistributed, namely,
invests this caslishareholder equity and debh the assets
described above and that in, say, one year’s time the assets
are sold, the loan is repaid, and any remaining funds are d_V
distributed among the shareholders. This payout is illustrated \%
in Fig. 2 where the value of the fir (solid line) is decom-
posed into the equity and debt componefaist-dashed and
dashed/solid lines, respectivelyf the value of the assel¢ “4In the language of option pricing, equity is a “call option” on the
is less thah K then the equity holders get nothing and thevalue of the firm with a “strike price” at the level of the debt
Similarly, debt is a “buy-write” where the debt holders have effec-
tively bought the firmV and simultaneously sold a call to the equity
3strictly speaking, the firm would also need to pay the interest orholders.
the debt as well, i.eK(1+r) wherer is the annual rate of interest SSee, for exampl€,25]. The variableK can be a function of the
of the debt. actual level of the debt and can be time dependent.

= pdt+odW, (1)
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where u and o are the constant drift and volatility of the ' '
asset valuet denotes time, andlV is a standard Brownian
motion® This geometric Brownian motion is the “harmonic Vo F g
oscillator” of the contingent-claims theory of asset dynamics
and, consequently, a reasonable starting point. However, a .,
considerable literature has developed in recent years demon-3
strating the need to go beyond this description of dynamics
for traded securitie§articularly at very short timesand we
shall return to this below in Sec. IV. Following Black and
Cox[25] we also assume that when the asset value falls to a
prescribed level denoted WY the company defaults. Trans-
forming to the normalized variablg defined by

FIRM VA

V Inital Rating Default
L 2 TIME

FIG. 3. A representation of the temporal evolution of a corpo-
ration from initial agency rating to default.

Q—;n

and using Ito’s lemma, we have that

dg=pu*dt+dW, 3 ) _ _
lished static pool average cumulative default probabilities for
where u* =(u/o— o/2). The default level now becomes  each credit rating given by Standard and Pog23] shown
=0. Sinceq is a measure of how far the firm is from the in Table I. These values represent the probability of default
default level, it has a natural interpretation as the distance tas a function of time following thenitial rating of the com-
default discussed by CrosHi24,26). Given the initial value pany. For example, while a company that was initially rated
o, We can calculate the expected cumulative default probBBB may undergo any number of rating changes over time,
ability D(t) from the first-passage-time probabilitg7,2 once it defaults it is treated in this analysis as being a BBB
default. It can be seen that for each rating the change in the
cumulative default probability slowgand in some cases
, (4 ceaseparound 10 years, reflecting the fact that few defaults
(and in some cases no defaylteve been observed beyond
10 years. This, as discussed below, is most likely due to the
limitation of the sample sizes available. Consequently, we
sed data from the first eight years for each rating to fit Eq.

—Qo—u*t — Qo+ p*t
D(t)=N Qo— M Qo+ m
Vit Vt

whereN(x) is the cumulative normal distribution functidn.
The model for ratings-based default embodied by this ex

ression can be interpreted as illustrated in Fig. 3. When . LSS
b b g 4). The parameterg, andu* were obtained by minimizing

firm is initially rated ¢=0) it will be q, standard deviations the sum of the squared difference between the observed de-
away from default. As time passe$~0) the company's fault behavior shown in Table | and the calculated values

credit state, buffeted by the vaguaries of the economic envi- . . . .
ronment, diffuses Withydrifw* gamd unit volatility. Should obtained from Eq(4) subject to the constraint that the long-

: . hy > P
the firm’s fortunes evolve such thatbecomes zero, it en- time cumulative default probabilitp (->) = ex —2u"do] be

counters the absorbing boundary of default. We now consider

whether this model can describe observed default behavior. TABLE I. Observed cumulative default probabiliti€¥) as re-
ported by Standard and Poor’s.

+e" 2+ wN

IIl. THE DEFAULT MODEL AND OBSERVED DEFAULT Time (yr) AAA  AA A BBB BB B cce

BEHAVIOR

There are two parameters in Ed), g, and x*, that can ; 8:88 8:8‘11 82‘11 g:i; g:g; 156.1;0 ig’gi
be_varin to fit the IObeeLVEd ggfault prot_)abilitiesbfor ea(;:h 3 004 011 048 077 500 1536 33.35

rating. As an example of how this expression can be used to
reprgsent observecFi) default behavioFr) we consider the pub- 4 0.08 021 031 128 704 1860 36.83
5 0.13 033 047 181 8.82 2095 40.67
6 0.22 049 0.63 234 10.68 22.65 41.83
5The notion of the value of the firm as a time-dependent stochastic 7 033 064 082 273 1171 2408 42.64
variable can be traced at least as far back as the pioneering options 8 052 076 102 309 1278 2532 42.86
work of Black and Schole§13] and Merton[14], and is a basic 9 059 084 125 337 1371 26.29 4363
tenet of essentially all contingent-claims security analysis. 10 0.67 090 148 3.63 1442 27.13 44.23
"Those familiar with the work of Black and Cd®5] will see a 11 067 094 168 381 1519 27.54 44.23
strong similarity between our Edq4) and their Eq.(7). There is, 12 067 098 178 394 1555 27.76 44.23
indeed, a direct correspondence that can be derived by taking their 13 067 098 184 4.09 1584 27.83 44.23
reorganization boundary to be independent of time and noting that 14 0.67 098 188 4.20 1584 27.83 44.23
their Eq.(7) is for the probability that the firm has not defaulted 15 0.67 098 192 427 1584 27.83 44.23

while our Eq.(4) is for the probability that the firm has defaulted.
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TABLE Il. Calculated cumulative default raté%b) obtained by
fitting Eq. (4) to the data in Table I.

Time (yr) AAA AA A BBB BB B CCC
1 0.00 0.00 0.00 0.01 035 424 19.19
2 0.00 0.01 0.03 025 254 1111 29.49
3 0.02 0.07 014 0.77 5.08 15.72 34.60
4 0.07 019 031 135 7.27 18.84 37.66
5 0.15 034 050 1.88 9.06 21.06 39.69
6 0.25 049 0.67 234 1051 2271 41.13
7 0.36 064 083 273 11.70 23.97 4220
8 047 0.78 097 3.05 12.68 2497 43.02
9 0.58 090 1.09 331 1349 2576 43.66
10 069 1.01 1.19 353 1417 26.41 44.17
11 0.79 1.10 1.27 3.72 1476 26.94 4459
12 0.88 1.19 135 3.87 1525 27.38 4493
13 096 1.26 141 400 1568 27.76 45.22
14 1.04 132 146 411 16.05 28.07 45.46
15 111 137 150 4.20 16.37 28.35 45.66

ordered as expected[i.e., Daaa(®)<Dpp(®)<---

<Dcce(®)]. This multidimensional minimization was ef-
fected using the generalized reduced gradieriz2 nonlin-
ear optimization solver in Microsoft EXCEM. The fitted
default probabilities using Ed@4) and the parameterg and

w* resulting from the fitting procedure just described are
shown in Table II.
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FIG. 5. Observed and calculated cumulative default probability
for investment grade credits. The observed probabilities denoted by
the symbols are from the Standard and Poor’s report. The model
curves are based on a fit of E(l) to the observed probabilities
between one and eight years.

The result of this fit for non-investment grade credits is
shown in Table Il and Fig. 4. The fit to the these credits
illustrates the rather good ability of this two-parameter
model to describe the default behavior over the entire 15
year horizon based on a fit to only the first eight years of
data. The concave nature of the data is well reproduced by
Eqg. (4) as is the substantial slowing of default probability
accumulation beyond 10 years. A comparison of Tables | and
Il shows, however, that beyond a certain time horizon there
are no observed defaults and the cumulative default probabil-
ity ceases to change. The model, however, continues to rise
gradually, indicating that the lack of observed defaults is
likely due to a limited sample size and that, in time, we can
expect to see more defaults in this area. Financially, there is
nothing that would account otherwise for the observed lack
of defaults.

The result of our fit for investment grade credits is shown

FIG. 4. Observed and calculated cumulative default probabilityin Table Il and Fig. 5. The BBB credits shown in this figure
for noninvestment grade credits. The observed probabilities denotglustrate an interesting qualitative change in default behav-
by the symbols are from the Standard and Poor’s report. The modédr: the short-horizon data areonvex in time. The
curves are based on a fit of E(f) to the observed probabilities intermediate-horizon data are linear in time and the longer-
between one and eight years.

horizon data are concave. We see that our simple two-
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6 T T T T T T T TABLE lll. Calculated and observed mean time to defdut).
X
5 X x - Rating Variableu* Constantu* Observed
+
2]
- 4 i AAA 14.7 16.1 8.0
5 % AA 10.8 14.8 8.3
=L 1 A 9.0 14.1 8.2
Y % BBB 8.0 11.2 6.6
D, 1 BB 8.4 7.2 4.7
é X B 5.1 5.0 3.4
L x cce 3.0 3.1 3.2
Py [} ( ] [} o —o— 0
0 1 1 1 1 1 1 1
AAA  AA A BBB BB B ccC prompted us to explore the results that would followuif
S&P RATING were assumed priori to be the same for all credit ratings.

Under this constraint differences in default behavior among
and drift »* (® and lind as a function of credit rating. The various ratings are driven solely _by _the initial d_ist_ance to
(G, *) pairs (+,®) were obtained by an independent fit for each defaultqo. The resglts of a glopal fit with this restriction are
rating of Eq.(4) to thet<8 yr data in Table I. Thej, resultsx shown in Fig. 6 withqgo now given by _the_symbok and_
were obtained by a simultaneous fit of E4) to all of thet<8 yr p*=0.35 shown as a horizontal line in Fig. 6. Comparing
data in Table I, which allowed for a different value qf for each  the go for constant and variable drift we see that settiry
rating but a single value gi* for all ratings. The resulting value of constant across credit ratings has essentially no impagg on
u*, 0.35 is depicted by the horizontal line. for the lower credit ratings and has a minor impact on the
higher credit ratings. Indeed, with the exception of the AA,

parameter model provides a very reasonable description di @nd BBB credits, the results fay, are nearly identical as
the data. The cumulative default behavior of A credits is andicated by the coincidence of the symbeisand <. That
challenge to the model. The model clearly tracks the ob{he default dynamics of all credit ratings can be represented
served data well between one and eight years and from 11 # @ single value ofx* implies that differences in cumula-
15 years, but an accumulation of defaults in the 8 to 11 yeafiveé default behavior among various ratings are indeed
time frame results in a substantial offset between the opbdriveén almost exclusively by the initial distance to default
served and the calculated data in the 11 to 15 year regioflo: ) i . ,
One solution is to fit over the first 10 years. While this is Modeling the default process as a first-passage time yields
perfectly reasonable and most people using such a model gSimple expression for the mean time to defeqytt ™. We
fit their data would likely do so, we felt it useful to see how compare the results of this expression with those reported by
far we could get using a uniform time range for fitting pur- Standard and Poor’s in Table Ill. The deviation between the
poses. For AA and AAA credit default behavior we see gooocalculated and observed results reflects the lack of observed
fits to observations over the first eight years and reasonabf@efault at longer tenors. However, for the same reason that
extrapolations with significant deviations coinciding with the W& would expect the longer-tenor cumulative default prob-
point at which the cumulative default data stop changing dud@bility for the AA and AAA credits to increase over time, so
to lack of observed defaults. too do we expect the mean time to default to increase over
The coefficients of Eq4), q, and u*, that resulted from time for investment-grade credits.
the fitting procedure that generated Figs. 4 and 5 are shown
as a function of credit rating in Fig. 6 together with those
coefficients that resulted from a subsequent simulation sug-
gested by the initial results. The symbols and @ corre- Comparing observed corporate cumulative default prob-
spond to the fitted values a@f, and u* as described in the abilities to those calculated using a stochastic model, we find
previous paragraphs. We see the intuitively expected resuthat corporations default as if via diffusive dynamics. The
that the better the credit rating the larger the initial distancemodel, based on a contingent-claims analysis of corporate
to default. Recalling from our earlier discussion that the dis-capital structur¢25], yields a single analytic expression for
tance to default is measured in standard deviations, we semrporate default behavior that is calibrated easily with his-
that the average AAA company is initially about 5.5 standardtorical default probabilities. We used this model to analyze
deviations from default, the average BBB company is ini-the observed default data published by Standard and Poor’s
tially about 4 standard deviations from default, and the averf23] and found that a single variable in the analytic formula
age CCC company is initially about 1 standard deviationprovides effective discrimination between various credit rat-
from default. ings. This variable is quite similar to the “distance to de-
The normalized driftw*, denoted by®, resulting from  fault” described by Crosbi¢24,26 and provides an attrac-
the fitting procedure that generated Figs. 4 and 5 is remarkive interpretation of the default process in terms of the bond
able in that, while each credit rating was fitted individually, indenture analysis of Black and C§25]. Despite its simple
these normalized drifts are quite similar. This similarity underpinnings, the model is remarkably successful in de-

FIG. 6. The calculated initial distance to defagjt (X and +)

IV. SUMMARY
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scribing the cumulative default rates published by Standargiction of equity in Fig. 2 illustrates, equity is a function of
and Poor’s[23]. This implies that the capital structure of the value of the firm. Thus, the price fluctuations of indi-
corporations, despite their differences, map onto the simpleidual companies are directly related to the dynamics of firm
“effective” capital structure given in the Merton model. The value, and recent research.qg.,[29]) has clearly demon-
ability to represent observed default behavior by a singlestrated that a dynamics richer than geometric Brownian mo-
analytic expression and to differentiate credit-rating-tion underlies these fluctuations. An integration of the dy-
dependent default behavior with a single variable recomnamics implicated in price fluctuation research with
mends this model for a variety of risk management applicacuymulative default results should provide a much more real-
tions including the mapping of bank default experience toistic description of the default process.

public credit ratings.

Geometric Brownian motion was proposed as a descrip-

tion of firm dynamics roughly 30 years ap2—-14,23 and
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