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Corporate default behavior: A simple stochastic model
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We compare observed temporal dynamics of corporate default to a first-passage-time model and find that
corporations default as if via diffusive dynamics.
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I. INTRODUCTION

An entity defaults when it fails to make a contractua
obligated payment to a creditor. When that entity is a cor
ration the impact on securities issued by that corporation
be both swift and dramatic. Consequently, the dynamics
the default process bear directly on the practice of risk m
agement and security pricing as well as on current rese
on asset price dynamics. While there is a long tradition
asset dynamics research in both the finance and physic
erature@1–4#, the closely related dynamics of default ha
receive comparatively little attention. In this paper we sh
that a simple stochastic model of corporate default dynam
that is well known in statistical mechanics—geomet
Brownian motion with an absorbing barrier—provides a
markably good description of observed default behavior
corporations and implies that corporations default as if
diffusive dynamics.

While default forecasting has been the subject of ac
research for decades@5–7#, the relationship between ob
served corporate default data and the stochastic dynamic
firm value remains indirectly explored. This is due, in part,
the historical development of the two major research p
grams in this area. One program can be characterize
originating with the work of Altman@8,9# where a credit
score is developed as a linear function of explanatory
counting variables. While this approach has been succes
in predicting default and is consistent with what one mig
expect given the focus of rating agencies on financial ra
@10,11#, it has a linear deterministic structure that provid
limited insight into the stochastic dynamics of corporatio
The other major research program began with the work
Merton @12#, who applied a contingent-claims approa
@13,14# to the calculation of corporate bond spreads. A
though this approach is an explicitly stochastic treatmen
corporate dynamics, it suffered marginalization becaus
failed to reproduce observed corporate bond prices. Cur
bond price research@15# now recognizes that this margina
ization was not justified because the difference in price
namics between corporate and government bonds is only
tially determined by corporate default dynamics. Thus, wh
extensions of Merton’s model~e.g., @16–18#! that typically
involve multiple stochastic processes can reproduce b
prices, they provide limited direct information regarding t
stochastic dynamics of firm value. Nevertheless, the suc
of these models and of commercial products based on
1063-651X/2002/65~5!/056119~6!/$20.00 65 0561
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prietary stochastic models of default1 provides compelling
evidence in support of the usefulness of a stochastic
proach to explaining default dynamics.

Our understanding of corporate default dynamics is co
plicated by the comparatively rare nature of the corpor
default event. Fortunately, a variety of financial institutio
including rating agencies have compiled cumulative defa
probabilities for corporations with credit ratings. Ratin
provide the investor with a measure of the default risk
corporate securities. Indeed, it has been known for deca
that ‘‘a rating is designed to indicate how likely it is that th
issuer will be able to meet principal and interest paymen
@10#. In many respects ratings are rather remarkable in
the complexity of the capital structure of a firm can
summed up in a single letter grade.2 That this scalar repre
sentation of the capital structure is, as cited above, a mea
of the probability of payment~and, by necessity, the prob
ability of default! implies that a comparatively simple dy
namics may be able to describe default dynamics, and
purpose of this paper is to demonstrate that this is indeed

The challenge posed to a theoretical description of cor
rate default is illustrated in Fig. 1 where we present the
mulative default probability as a function of time for AAA
BBB, and CCC rated companies published by Standard
Poor’s @23#. The AAA data denoted by the diamonds a
roughly convex for all time less than 10 years. Beyond
years there are no observed defaults and the cumulative
fault probability is constant. The CCC data denoted by
triangles are quite different with a concave function for
time. The BBB data show characteristics of both AAA a
CCC: convex for short times and concave for long tim
Furthermore, we see that in passing from AAA to CCC t
cumulative default probabilities change by an order of m

1See, for example, KMV’sCREDITMONITOR™ @19#, J. P. Morgan’s
CREDITMETRICS™ @20#, and Moody’s public firm risk model@21#.

2In this paper we have used the data published by Standard
Poor’s and, consequently, their rating convention. In this conven
a AAA rating is the rating of ‘‘highest grade’’ and a D rating is
reserved for a firm in default and indicative of the lowest estima
salvage value. AAA, AA, A, and BBB are all considered ‘‘inves
ment grade.’’ Ratings BB, B, CCC, and CC are known by the nam
‘‘not investment grade,’’ ‘‘high yield,’’ and ‘‘junk.’’ The rating C is
reserved for income bonds. Finally, ratings DDD–D are in ‘‘defau
with rating indicating relative salvage value’’@22#.
©2002 The American Physical Society19-1
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TING LEI AND RAYMOND J. HAWKINS PHYSICAL REVIEW E 65 056119
nitude. To describe this default behavior we develop an a
lytic expression for default probability in Sec. II and apply
to the observed default data published by Standard
Poor’s @23# in Sec. III. Our analysis will demonstrate that
single variable in the analytic formula provides effective d
crimination between various credit ratings. We conclude t
paper in Sec. IV.

II. THE DEFAULT MODEL

The structural basis for the firm model is, perhaps, b
illustrated by the levered mutual fund or unit trust describ
by Crosbie@24#: a firm totally invested in traded securitie
We assume that the assets of the firm are securities
readily observable market prices with which the value of
firm can be measured at any time. To buy these assets
firm can access two sources of funds. First, the firm
obtain funds from the equity market by taking in cash fro
the shareholders in the firm. Second, the firm can ob
funds from the debt market by issuing a bond or taking ou
loan of amountK. The process of generating debt is alwa
accompanied by the generation of a credit rating. This can
explicit and public as seen when a firm requests a rating
debt issue by a rating agency, explicit and private as whe
bank makes a loan, or implicit and public when a nonra
issue is priced in the bond market. We assume that the
invests this cash~shareholder equity and debt! in the assets
described above and that in, say, one year’s time the as
are sold, the loan is repaid, and any remaining funds
distributed among the shareholders. This payout is illustra
in Fig. 2 where the value of the firmV ~solid line! is decom-
posed into the equity and debt components~dot-dashed and
dashed/solid lines, respectively!. If the value of the assetsV
is less than3 K then the equity holders get nothing and t

3Strictly speaking, the firm would also need to pay the interest
the debt as well, i.e.,K(11r ) wherer is the annual rate of interes
of the debt.

FIG. 1. Observed cumulative default probability for AAA, BBB
and CCC credits published by Standard and Poor’s~diamonds,
squares, and triangles, respectively!. The arrows point to the appro
priatey axis for each data series.
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firm is in default as it can only pay (V/K)% of the debt
amount. If the value of the assetsV is equal toK the equity
holders also get nothing, but the debt can be fully repa
Finally, if the value of the assetsV exceedsK then the debt
can be repaid and the value of the equity is equal to
differenceV2K. Thus the value of the firmV is equal to the
value of the equity, max(V2K,0), and the value of the deb
V2max(V2K,0). Given these functional forms for the pa
out to the stockholders and debt holders of the firm, it is
relatively straightforward exercise in option-pricing theor4

to price the value of either debt or equity at any point in tim
between the initial investment and the payout date. This i
alized ‘‘wait and see where the assets end up’’ model and
reality of debt agreements can be brought closer togethe
allowing for the debt holders to reorganize the firm whene
V reaches a prescribed level:5 a common feature of contrac
tual agreements between the debt holders and the firm kn
as bond indentures. Although corporations typically hav
more complex capital structure and often invest in assets
which prices are hard to come by, the basic features of
uity, debt, and~by implication! bankruptcy are, in genera
the same: funds are raised in the equity and debt markets
if a debt payment is missed default occurs.

The model begins with the traditional assumption tha
corporation is represented as an asset with a market valuV,
and that, while the return of the asset is uncertain becaus
various risks associated with the business, it is lognorm
distributed, namely,

dV

V
5mdt1sdW, ~1!

n

4In the language of option pricing, equity is a ‘‘call option’’ on th
value of the firm with a ‘‘strike price’’ at the level of the debtK.
Similarly, debt is a ‘‘buy-write’’ where the debt holders have effe
tively bought the firmV and simultaneously sold a call to the equi
holders.

5See, for example,@25#. The variableK can be a function of the
actual level of the debt and can be time dependent.

FIG. 2. A schematic representation of a simple corporate cap
structure.
9-2
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CORPORATE DEFAULT BEHAVIOR: A SIMPLE . . . PHYSICAL REVIEW E 65 056119
where m and s are the constant drift and volatility of th
asset value,t denotes time, andW is a standard Brownian
motion.6 This geometric Brownian motion is the ‘‘harmon
oscillator’’ of the contingent-claims theory of asset dynam
and, consequently, a reasonable starting point. Howeve
considerable literature has developed in recent years dem
strating the need to go beyond this description of dynam
for traded securities~particularly at very short times! and we
shall return to this below in Sec. IV. Following Black an
Cox @25# we also assume that when the asset value falls
prescribed level denoted byK the company defaults. Trans
forming to the normalized variableq, defined by

q[
1

s
lnS V

K D , ~2!

and using Ito’s lemma, we have that

dq5m* dt1dW, ~3!

wherem* [(m/s2s/2). The default level now becomesq
50. Sinceq is a measure of how far the firm is from th
default level, it has a natural interpretation as the distanc
default discussed by Crosbie@24,26#. Given the initial value
q0, we can calculate the expected cumulative default pr
ability D(t) from the first-passage-time probability@27,28#

D~ t !5NS 2q02m* t

At
D 1e22m* q0NS 2q01m* t

At
D , ~4!

whereN(x) is the cumulative normal distribution function7

The model for ratings-based default embodied by this
pression can be interpreted as illustrated in Fig. 3. Whe
firm is initially rated (t50) it will be q0 standard deviations
away from default. As time passes (t.0) the company’s
credit state, buffeted by the vaguaries of the economic e
ronment, diffuses with driftm* and unit volatility. Should
the firm’s fortunes evolve such thatq becomes zero, it en
counters the absorbing boundary of default. We now cons
whether this model can describe observed default behav

III. THE DEFAULT MODEL AND OBSERVED DEFAULT
BEHAVIOR

There are two parameters in Eq.~4!, q0 andm* , that can
be varied to fit the observed default probabilities for ea
rating. As an example of how this expression can be use
represent observed default behavior we consider the p

6The notion of the value of the firm as a time-dependent stocha
variable can be traced at least as far back as the pioneering op
work of Black and Scholes@13# and Merton@14#, and is a basic
tenet of essentially all contingent-claims security analysis.

7Those familiar with the work of Black and Cox@25# will see a
strong similarity between our Eq.~4! and their Eq.~7!. There is,
indeed, a direct correspondence that can be derived by taking
reorganization boundary to be independent of time and noting
their Eq. ~7! is for the probability that the firm has not defaulte
while our Eq.~4! is for the probability that the firm has defaulted
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lished static pool average cumulative default probabilities
each credit rating given by Standard and Poor’s@23# shown
in Table I. These values represent the probability of defa
as a function of time following theinitial rating of the com-
pany. For example, while a company that was initially rat
BBB may undergo any number of rating changes over tim
once it defaults it is treated in this analysis as being a B
default. It can be seen that for each rating the change in
cumulative default probability slows~and in some case
ceases! around 10 years, reflecting the fact that few defau
~and in some cases no defaults! have been observed beyon
10 years. This, as discussed below, is most likely due to
limitation of the sample sizes available. Consequently,
used data from the first eight years for each rating to fit E
~4!. The parametersq0 andm* were obtained by minimizing
the sum of the squared difference between the observed
fault behavior shown in Table I and the calculated valu
obtained from Eq.~4! subject to the constraint that the long
time cumulative default probabilityD(`)5exp@22m*q0# be

tic
ns

eir
at

FIG. 3. A representation of the temporal evolution of a corp
ration from initial agency rating to default.

TABLE I. Observed cumulative default probabilities~%! as re-
ported by Standard and Poor’s.

Time ~yr! AAA AA A BBB BB B CCC

1 0.00 0.01 0.04 0.21 0.91 5.16 20.9
2 0.00 0.04 0.11 0.48 2.82 10.90 28.0
3 0.04 0.11 0.18 0.77 5.00 15.36 33.3
4 0.08 0.21 0.31 1.28 7.04 18.60 36.8
5 0.13 0.33 0.47 1.81 8.82 20.95 40.6
6 0.22 0.49 0.63 2.34 10.68 22.65 41.8
7 0.33 0.64 0.82 2.73 11.71 24.08 42.6
8 0.52 0.76 1.02 3.09 12.78 25.32 42.8
9 0.59 0.84 1.25 3.37 13.71 26.29 43.6
10 0.67 0.90 1.48 3.63 14.42 27.13 44.2
11 0.67 0.94 1.68 3.81 15.19 27.54 44.2
12 0.67 0.98 1.78 3.94 15.55 27.76 44.2
13 0.67 0.98 1.84 4.09 15.84 27.83 44.2
14 0.67 0.98 1.88 4.20 15.84 27.83 44.2
15 0.67 0.98 1.92 4.27 15.84 27.83 44.2
9-3
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TING LEI AND RAYMOND J. HAWKINS PHYSICAL REVIEW E 65 056119
ordered as expected @i.e., DAAA(`)<DAA(`)<•••

<DCCC(`)#. This multidimensional minimization was ef
fected using the generalized reduced gradient~GRG2! nonlin-
ear optimization solver in Microsoft EXCELTM. The fitted
default probabilities using Eq.~4! and the parametersq0 and
m* resulting from the fitting procedure just described a
shown in Table II.

FIG. 4. Observed and calculated cumulative default probab
for noninvestment grade credits. The observed probabilities den
by the symbols are from the Standard and Poor’s report. The m
curves are based on a fit of Eq.~4! to the observed probabilitie
between one and eight years.

TABLE II. Calculated cumulative default rates~%! obtained by
fitting Eq. ~4! to the data in Table I.

Time ~yr! AAA AA A BBB BB B CCC

1 0.00 0.00 0.00 0.01 0.35 4.24 19.1
2 0.00 0.01 0.03 0.25 2.54 11.11 29.4
3 0.02 0.07 0.14 0.77 5.08 15.72 34.6
4 0.07 0.19 0.31 1.35 7.27 18.84 37.6
5 0.15 0.34 0.50 1.88 9.06 21.06 39.6
6 0.25 0.49 0.67 2.34 10.51 22.71 41.1
7 0.36 0.64 0.83 2.73 11.70 23.97 42.2
8 0.47 0.78 0.97 3.05 12.68 24.97 43.0
9 0.58 0.90 1.09 3.31 13.49 25.76 43.6
10 0.69 1.01 1.19 3.53 14.17 26.41 44.1
11 0.79 1.10 1.27 3.72 14.76 26.94 44.5
12 0.88 1.19 1.35 3.87 15.25 27.38 44.9
13 0.96 1.26 1.41 4.00 15.68 27.76 45.2
14 1.04 1.32 1.46 4.11 16.05 28.07 45.4
15 1.11 1.37 1.50 4.20 16.37 28.35 45.6
05611
The result of this fit for non-investment grade credits
shown in Table II and Fig. 4. The fit to the these cred
illustrates the rather good ability of this two-parame
model to describe the default behavior over the entire
year horizon based on a fit to only the first eight years
data. The concave nature of the data is well reproduced
Eq. ~4! as is the substantial slowing of default probabili
accumulation beyond 10 years. A comparison of Tables I
II shows, however, that beyond a certain time horizon th
are no observed defaults and the cumulative default proba
ity ceases to change. The model, however, continues to
gradually, indicating that the lack of observed defaults
likely due to a limited sample size and that, in time, we c
expect to see more defaults in this area. Financially, ther
nothing that would account otherwise for the observed la
of defaults.

The result of our fit for investment grade credits is sho
in Table II and Fig. 5. The BBB credits shown in this figu
illustrate an interesting qualitative change in default beh
ior: the short-horizon data areconvex in time. The
intermediate-horizon data are linear in time and the long
horizon data are concave. We see that our simple t

y
ed
el

FIG. 5. Observed and calculated cumulative default probab
for investment grade credits. The observed probabilities denote
the symbols are from the Standard and Poor’s report. The m
curves are based on a fit of Eq.~4! to the observed probabilities
between one and eight years.
9-4
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CORPORATE DEFAULT BEHAVIOR: A SIMPLE . . . PHYSICAL REVIEW E 65 056119
parameter model provides a very reasonable descriptio
the data. The cumulative default behavior of A credits is
challenge to the model. The model clearly tracks the
served data well between one and eight years and from 1
15 years, but an accumulation of defaults in the 8 to 11 y
time frame results in a substantial offset between the
served and the calculated data in the 11 to 15 year reg
One solution is to fit over the first 10 years. While this
perfectly reasonable and most people using such a mod
fit their data would likely do so, we felt it useful to see ho
far we could get using a uniform time range for fitting pu
poses. For AA and AAA credit default behavior we see go
fits to observations over the first eight years and reason
extrapolations with significant deviations coinciding with t
point at which the cumulative default data stop changing
to lack of observed defaults.

The coefficients of Eq~4!, q0 andm* , that resulted from
the fitting procedure that generated Figs. 4 and 5 are sh
as a function of credit rating in Fig. 6 together with tho
coefficients that resulted from a subsequent simulation s
gested by the initial results. The symbols1 and d corre-
spond to the fitted values ofq0 andm* as described in the
previous paragraphs. We see the intuitively expected re
that the better the credit rating the larger the initial distan
to default. Recalling from our earlier discussion that the d
tance to default is measured in standard deviations, we
that the average AAA company is initially about 5.5 standa
deviations from default, the average BBB company is i
tially about 4 standard deviations from default, and the av
age CCC company is initially about 1 standard deviat
from default.

The normalized driftm* , denoted byd, resulting from
the fitting procedure that generated Figs. 4 and 5 is rem
able in that, while each credit rating was fitted individual
these normalized drifts are quite similar. This similar

FIG. 6. The calculated initial distance to defaultq0 (3 and1)
and drift m* (d and line! as a function of credit rating. The
(q0 ,m* ) pairs (1,d) were obtained by an independent fit for ea
rating of Eq.~4! to the t<8 yr data in Table I. Theq0 results3
were obtained by a simultaneous fit of Eq.~4! to all of the t<8 yr
data in Table I, which allowed for a different value ofq0 for each
rating but a single value ofm* for all ratings. The resulting value o
m* , 0.35 is depicted by the horizontal line.
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prompted us to explore the results that would follow ifm*
were assumeda priori to be the same for all credit ratings
Under this constraint differences in default behavior amo
various ratings are driven solely by the initial distance
defaultq0. The results of a global fit with this restriction ar
shown in Fig. 6 withq0 now given by the symbol3 and
m* 50.35 shown as a horizontal line in Fig. 6. Compari
the q0 for constant and variable drift we see that settingm*
constant across credit ratings has essentially no impact oq0
for the lower credit ratings and has a minor impact on
higher credit ratings. Indeed, with the exception of the A
A, and BBB credits, the results forq0 are nearly identical as
indicated by the coincidence of the symbols1 and3. That
the default dynamics of all credit ratings can be represen
by a single value ofm* implies that differences in cumula
tive default behavior among various ratings are inde
driven almost exclusively by the initial distance to defa
q0.

Modeling the default process as a first-passage time yi
a simple expression for the mean time to default:q0 /m* . We
compare the results of this expression with those reported
Standard and Poor’s in Table III. The deviation between
calculated and observed results reflects the lack of obse
default at longer tenors. However, for the same reason
we would expect the longer-tenor cumulative default pro
ability for the AA and AAA credits to increase over time, s
too do we expect the mean time to default to increase o
time for investment-grade credits.

IV. SUMMARY

Comparing observed corporate cumulative default pr
abilities to those calculated using a stochastic model, we
that corporations default as if via diffusive dynamics. T
model, based on a contingent-claims analysis of corpo
capital structure@25#, yields a single analytic expression fo
corporate default behavior that is calibrated easily with h
torical default probabilities. We used this model to analy
the observed default data published by Standard and Po
@23# and found that a single variable in the analytic formu
provides effective discrimination between various credit r
ings. This variable is quite similar to the ‘‘distance to d
fault’’ described by Crosbie@24,26# and provides an attrac
tive interpretation of the default process in terms of the bo
indenture analysis of Black and Cox@25#. Despite its simple
underpinnings, the model is remarkably successful in

TABLE III. Calculated and observed mean time to default~yr!.

Rating Variablem* Constantm* Observed

AAA 14.7 16.1 8.0
AA 10.8 14.8 8.3
A 9.0 14.1 8.2
BBB 8.0 11.2 6.6
BB 8.4 7.2 4.7
B 5.1 5.0 3.4
CCC 3.0 3.1 3.2
9-5
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TING LEI AND RAYMOND J. HAWKINS PHYSICAL REVIEW E 65 056119
scribing the cumulative default rates published by Stand
and Poor’s@23#. This implies that the capital structure o
corporations, despite their differences, map onto the sim
‘‘effective’’ capital structure given in the Merton model. Th
ability to represent observed default behavior by a sin
analytic expression and to differentiate credit-ratin
dependent default behavior with a single variable reco
mends this model for a variety of risk management appli
tions including the mapping of bank default experience
public credit ratings.

Geometric Brownian motion was proposed as a desc
tion of firm dynamics roughly 30 years ago@12–14,25# and
before cumulative default statistics had been collected. W
it does rather well in describing observed cumulative
faults, it is undoubtedly an incomplete description of fir
dynamics; particularly so at short time horizons. As the
ts

e

to

te
m

F

em

ky

05611
rd

le

e
-
-
-

o

-

le
-

-

piction of equity in Fig. 2 illustrates, equity is a function o
the value of the firm. Thus, the price fluctuations of ind
vidual companies are directly related to the dynamics of fi
value, and recent research~e.g., @29#! has clearly demon-
strated that a dynamics richer than geometric Brownian m
tion underlies these fluctuations. An integration of the d
namics implicated in price fluctuation research w
cumulative default results should provide a much more re
istic description of the default process.
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